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Knowledge of the magnitude and origins of potential barriers to internal 

rotation in simple, acyclic systems has important implications in understand- 

ing the conformational dynamics of more complex structures. Microwave and 

dynamic nuclear magnetic resonance (DNMR) spectroscopy have been especially 

effective in determining barriers to both rotation2 and atomic inversion 3 in 

acyclic compounds. 

Although extensive experimental studies suggesting the origins of bar- 

riers to pyramidal inversion at phosphorous have been performed, 3b there 

exists a dearth of information regarding the magnitude of rotational barriers 

about carbon-phosphorous single bonds. 4 This report concerns the direct ob- 

servation (DNMR method) of slow rotation about the C-P bond in tert- 

butyldichlorophosphine (l,) and di(tert-butyl)chlorophosphine (2) as well as a 

dramatic dependence of the 1HJlP spin-spin coupling constants in A and 2 on 

the orientation of methyl within a given tert-butyl group. 
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Examination 

vealed a doublet 

of the lIi DNMR spectrum of 2 (8% v/v in CIQCIiCl) at -43' re- 

resonance (61.20; JH,P = 15.1 Hz) consistent with rapid tert- 

butyl rotation on the DNMR time scale (Figure). Upon lowering the temperature, 

-the spectrumbroadenedandthen sharpened consistent with slowing of tert- 

butyl rotation on the DNMR time scale (Equation 1). A complete line shape 
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Cl Cl 
analysis of the lH DNMR spectrum of the methyl resonances in A at -160' (slow 

exchange) gave two resonances at 61.15 (6B; JH P = 20.9 Hz) and 61.27 (3K; 
I 

JH,P = 4.5 Hz). Subsequent examination of the DNMR spectrum of A with 31P 

decoupling (Figure) also revealed a series of spectra entirely consistent 

With Slowing Qf tert-butyl rotation. Derivation of rate constants from the 

DNMR spectra of A using a complete line shape analysis' gave E, = 6.8 to.4 

kcal/mole, AH* = 6.5 f0.4 kcal/mole, AS+ = 1 t4 eu, and AG+ = 6.4 fO.2 kcal/ 

mole at -148.2". 

Examination of the 'H DNMR spectrum of2 (5% v/v in CHzCHC1) also re- 

vealed changes consistent with slowing of tert-butyl rotation on the DNMR 

time scale (Figure) giving under conditions of slow exchange three methyl 

resonances at 61.23 (3H; JH p ~3.5 HZ), 61.22 (31i; JH p ~17 Hx), and 61.11 
I I 

(3H; JH p 116 Hz) as well as AG* = 6.0 kO.3 kcal/mole at -158.3O for tert- 
I 

butyl rotation. 

!Fwo important observations are reported above. First, although relatively 

small, the barriers to rotation about C-P bonds in & and 2 are within the ex- 

perimental limits of the DNMR method and thus make possible a study of factors 

contributing to the magnitude of such barriers. For example the dramatic 

effect of bond length and possibly bond angle is seen in a comparison of the 

tert-butyl rotational barriers in k and 2_with that in N,N-dichloro-N-tert- 
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butylamine (AG' = 9.4 f0.2 kcal/mole at -92°).6 Second, as observed in other 

systems,.' there exists in A and 2 a significant dependence of JH P on the con- 
, 

Me 

formational environment of a methyl group. In .&, 

the 'I-131P coupling constant associated with the 

methyl group gauche to two chlorines (Me*; 2) is 

dramatically smaller (4.5 Hz) than JH p associated 
I 

with the other two methyl groups (20.9 Hz). This 

trend will be useful in deriving conformational data from both time-averaged 

and slow exchange DNMR spectra. 
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